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FOUR-DIMENSIONAL DERIVATION OF THE 

EIXCTRODYNAMIC JUMP CONDITIONS, TRACTIONS, AND 

POWER TRANSFER AT A MOVING BOUNDARY 

By Robert C .  Costen 
Langley Research Center 

SUMMARY 

The purpose of t h i s  report  i s  t o  derive the  electrodynamic boundary con- 
di t ions,  surface t ract ions,  and surface power t ransfer  i n  complete form fo r  
easy application t o  boundary value problems i n  magnetofluiddynamics. 

Features of t h i s  report  include: 

Derivation of the  boundary conditions starts from Maxwell's equations i n  
four-dimensional i n t eg ra l  form. 
i n  covariant form and are then t ranslated t o  three-diniensional language. 

The boundary conditions are obtained d i rec t ly  

The inclusion of surface charge and surface current leads t o  a general cur- 
rent  boundary condition containing a surface curvature term. 
i s  found t o  have a component normal t o  the surface due t o  convection of surface 
charge i n  t h i s  direction. 

Surface current 

A surface form f o r  the  electromagnetic momentum and energy conservation 
l a w s  i s  derived from t h e  boundary conditions by using the same method by which 
the  volumetric conservation l a w s  a re  derived from Maxwell's equations. T h i s  
surface form gives the  electromagnetic t rac t ions  and energy t ransfer  a t  the  
surface i n  two forms: (a)  i n  terms of the  jump i n  the  stress-energy tensor 
and ( b )  i n  terms of surface current, surface charge, and the  mean f i e lds  across 
the surface. 

A set of i den t i t i e s  i s  obtained f o r  t he  force density and power-transfer 
density associated with the  antisymmetrical p a r t  of the  stress-energy tensor. 
The m e r i t  of these iden t i t i e s  rests largely on t h e i r  value as  evidence i n  the  
controversy over t he  symmetry of the  stress-energy tensor. 

INTROWC TION 

Although the electrodynamic equations f o r  moving m e d i a  were established 
early i n  the twentieth century by Minkowski, the  corresponding boundary 



conditions have been i n  a s t a t e  of continuing development up t o  the  present 
time. Maxwell's equations were shown t o  hold unaltered i n  moving media, and 
new velocity-dependent const i tut ive re la t ions  were derived t o  take account of 
the  motion's influence on the e l e c t r i c  and magnetic response of the  medium. 
The const i tut ive equations - although necessary f o r  t he  solution of ac tua l  
problems - do not a f f ec t  the boundary conditions (which a re  derived d i r ec t ly  
from Maxwell's equations) and hence a re  not relevant i n  the present derivation. 

At a fixed interface the boundary conditions a r e  the  famil iar  s e t  given by 
King ( r e f .  1, p. 169) ( i n  the notation used herein) 
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magnetic f i e l d  strength 

e l e c t r i c  f i e l d  strength 

e l e c t r i c  exci ta t ion 

magnetic excitation 

e l e c t r i c  current density 

surface charge density 

surface current density 

loca l  un i t  normal 

discontinuity G+ - G', with f signs r e l a t ive  t o  fi 

time coordinate 

But t h i s  s e t  of jump conditions does not hold f o r  the  large c lass  of prob- 
lems involving moving boundaries. Included i n  t h i s  c lass  a re  such problems as 



electromagnetic f i e l d s  coupled t o  surface waves on a f lu id ,  moving shock waves 
i n  a plasma, and moving so l id  bodies. 

The ear ly  derivations of jump conditions a t  a moving boundary a re  described 
i n  d e t a i l  by Pauli  ( r e f .  2, pp. 103-104) and Sommerfeld ( r e f .  3 ,  pp. 283-288). 
These produced formulas f o r  cer ta in  cases but f a i l ed  t o  y ie ld  general conditions 
of the type given f o r  boundaries a t  r e s t .  The present approach i s  d i f fe ren t  
from ear ly  derivations and follows a procedure f i r s t  applied t o  electrodynamics 
by Luneburg i n  1944 (ref. 4, pp. 15-22) and l a t e r  by Truesdell and Toupin i n  
1958 ( r e f .  5 ,  pp. 669 and 676-677). 
of surface charge density q and surface current density L which a re  essen- 
t i a l  i n  many applications.  Extending the  derivations t o  include these surface 
densi t ies  i s  the prime concern of t h i s  paper. 

Neither of these works+included the e f f ec t s  

The procedure i s  inherently four-dimensional, involving integrat ions i n  
Minkowski space. Consequently, a su i tab le  approach i s  t o  go the full route t o  
special  r e l a t iv i ty ,  t o  s t a r t  from Maxwell's equations i n  four-dimensional 
covariant form, and afterwards t o  t r a n s l a t e  the  r e su l t s  t o  three-dimensional 
language. 

The four-dimensional statement of the electrodynamic momentum and e n e r a  
conservation laws sea r s  formal s imi la r i ty  t o  Maxwell's four-dimensional equa- 
t i on  for ii' and D. 
s imilar t o  the 3 and D boundary condition and may be writ ten by inspection. 
The same i s  t rue  f o r  a group of i d e n t i t i e s  associated with the antisymmetrical 
pa r t  of the stress-energy tensor. 

Heye the surface form of the conservation laws i s  formally 

Although the derivations a re  new, a number of the simpler r e su l t s  presented 
here were obtained previously i n  reference 6 (chs. I and 11) by using a three-  
dimensional technique and the Lorentz transformation. 

SYMBOLS AND NOTATION 

Mathematical Notation 

A u n i t  s p a t i a l  vectors 

-?, - spa t i a l  vectors and tensors 

* dual vectors and tensors 

jump across a surface of discontinuity c1 
<> m e a n  value across a surface of discontinuity 

V s p a t i a l  gradient operator, ~ a ~ a  11 - + 12 - + ~a i 
ax ay 3 s  

3 

I 



space-time gradient operator, ~a il ax + 1-51 A a  - + 13 ~a - + 14 ^ l a  - - 
ay aZ ic at 

I t  modulus of a spatial vector or of a four-vector 

Superscripts : 

a antisymmetric part of stress-energy tensor or a derivative thereof 

S symmetric part of stress-energy tensor or a derivative thereof 

k limiting value as a surface of discontinuity is approached from the & 
sides, with k designations relative to surface unit normal 

Subscripts: 

Subscripts obey the summation convention of Cartesian tensor notation. 

Latin subscripts run from 1 to 3 (x,y,z) with the exception of t which 
represents time. 

Greek subscripts run from 1 to 4 (x,y,z,ict). 

Commas in subscripts denote partial differentiation. For example, 

Symbols 

a area segment of a two-dimensional surface, meters2 

magnetic field strength, webers/meter2 + B 

C mean surface curvature, meter-1 

C speed of light in vacuum, meters/second 

3 elect ri c excitation, coulombs/me t er2 

3 electric field strength, volts/meter 

electromagnetic field strength four-tensor, volts/meter 

electromagnetic excitation four-tensor, amperes/meter fcs 
4 



+ H magnetic excitation, amperes/meter 

J electri c current density , coulombs/met er2 - second 
K electromagnetic surface traction, newtons/meter2 

-+ 

* 
-+ 
k electromagnetic force density , newtons/meter3 
+ 
L electric surface current density, coulombs/meter -second 

Lorentz transformation matrix lap 

2 closed contour line bounding area a of a two-dimensional 
surface, meters 

M' = L(2 x 8 + x ??), a vector derived from Ta 
2 as 

ma unit four-normal to the three-dimensional hypersurface 'p(x,y,z,t) = 0 
in space-time 

N normal velocity, or speed of displacement, of a surface of electro- 
magnet i c di s c ontinui ty , meter s/second 

ni( or 8) unit normal to a two-dimensional surface 

P surface power transfer from electromagnetic fields to other forms of 
energy, watts/meter2 

P volumetric power transfer from electromagnetic fields to other forms 
of energy, watts/meter3 

x 2 - 1 2  x 2) a vector derived from 
C2 

S closed three-dimensional hypersurface in space-time, meters3 

Maxwell stress tensor, E D + H i B j  - WGij, or spatial part of T 
i j  aP' Tij 

Tal3 

newtons/meter2 

elec trowami c stress -energy tensor, newtons/meter2 

t time coordinate, second 

v f cur-dimensional hy-pervolume in space-time, meters4 

electrodynamic energy density, L(2 + 5 g), joules/meter3 
2 W 

5 



Cartesian spatial coordinates (x,y,z), meters xi 

Cartesian space-time coordinates (x,y,z,ict) , meters 
electric four-current density ( J1,Jz1J3,icp), coulombs/meter2-second 

Sij Kronecker delta 

Gapye Levi-Civita symbol defined by equation (31) 

€0 electric permittivity of vacuum, farads/meter 

€i jk 

tl 

Levi-Civita symbol defined by equation (~6) 

electric surface charge density, coulombs/meter2 

electromagnetic surface quasi-four-force density (K1,K2,K3,$' , 
K, ) 

newtons/meter2 

electromagnetic four-force density , newtons/meter3 

n, electric surface quasi -f our-current density (L~,L~,LJ, icv) , 
coulomb s/me t er - s ec ond 

P O  magnetic permeability of vacuum, henrys/meter 

outward unit four-normal on a closed three-dimensional hypersurface S I-cU 

P electric charge density, coulombs/meter3 

in space-time 

0 three-dimensional area on hypersurface cp(x,y,z,t) = Constant in 
space-time, meters3 

7 small dimensionless parameter 

cp(x,y,z,t) a continuously twice-differentiable function; cp = Constant repre- 
sents a moving and deforming surface in space (fig. 1) and a 
three-dimensional hypersurface in space-time (fig. 2) 

hcc ,y 
four-vector dual to tensor $ E 
arbitrary tensor *@ 
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I. EXJICTRODYNAMIC JUMP CONDITIONS AT A MOVING BOUNDARY 

General Considerations 

Moving surfaces.- Consider a two-dimensional surface i n  a rb i t ra ry  motion 
defined by cp(x,y,z,t) = 0, where cp i s  a continuously twice-differentiable 
function of Cartesian s p a t i a l  and time coordinates. (See f ig .  1.) The loca l  
un i t  normal t o  the surface i s  given by 

q , i  ni = - 
IPI 't  

I \  provided (ctp I does not vanish on the 

boundary, where Latin subscripts run 
from 1 t o  3 ,  and where comas i n  the  
subscript denote p a r t i a l  d i f fe ren t ia t ion .  

( + I  Region ' \ \  (-1 Region 

The loca l  normal veloci ty  of the  
surface, which i s  cal led the loca l  speed 
of displacement, or  simply the speed, of 
the surface may be determined a s  i n  / 

1 

Truesdell and Toupin ( r e f .  5 ,  pp. 498- Z J  ' 'p ( x ,  y, 2 .1 )  = 0 
Figure 1. - Two-dimensional surface (edge view) 

moving th rough space with local speed of dis- 
placement N. 

499): 
surface, the t o t a l  d i f f e r e n t i a l  

For a point which moves with the 

Transposing terms and dividing by 1% I d t  yields 

The coordinates x j  
the left-hand side of t h i s  equation i s  the surface speed, which i s  denoted 
i n  order t o  avoid confusion with the  usual notation f o r  f l u i d  velocity.  
the  loca l  speed of a surface cp(x,y,z,t) = 0 

a re  those of a point which remains on the surface; hence, 

Thus, 
N 

i s  given by 

where N > 0 fo r  motion i n  the  sense of 6 (eq. (1)). Equations (1) and (2)  
may be used t o  write the  t o t a l  d i f f e r e n t i a l  aCp as  

7 



Take the moving surface cp = 0 t o  be a surfase of electromagnetic+ dis- 
continuity, across  which e l e c t r i c  f i e l d s  
current density 3, and charge density p may have f i n i t e  increments. Surface 
current density L and surface charge density q may a lso  be prescribed on 
the  surface. 

3 and D, magnetic f i e l d s  B and 3, 

It i s  perhaps worthwhile t o  note t h a t  t he  moving surface referred t o  here 
i s  an abstract  geometrical e n t i t y  and qui te  independent ( i n  concept) of the  
material medium o r  of i t s  motion. For example, the medium on one s ide (o r  on 
both s ides)  may be i n  tangent ia l  motion while the  surface remains a t  r e s t ,  a s  
i n  steady, inviscid flow. Agatn, the medium on e i the r  side may have normal 
velocity components while' the  speed of the  surface i s  zero, a s  with a s ta t ionary 
shock wave. 
f i e l d s  t o  be discontinuous. Surfaces of electromagnetic discontinuity can occur 
withiin a homogeneous m e d i u m ,  a s  a t  the  f ront  of a step-shaped l i g h t  wave, or  a t  
t he  Cerenkov l i g h t  cone of an electron which exceeds the speed of light i n  the  
medium. 

Moreover, discont inui t ies  i n  the  m e d i u m  a re  not necessary f o r  the  

It i s  c lear ly  the  motion of the electromagnetic discontinuity surface which 
i s  d i rec t ly  relevant here - not the motion of matter. Hence, without 
r e s t r i c t i n g  the l a t t e r ,  it seems reasonable t h a t  N, the surface speed of dis- 
placement, i s  the only velocity t h a t  w i l l  appear i n  the  boundary conditions. 
This viewpoint has previously been expressed by Goldstein ( r e f .  7, pp. 69-70). 

Now view the  surface cp = 0 i n  Minkowski space - the  four-dimensional 
space-time continuum of special  r e l a t i v i t y  - and take the coordinate axes t o  be 
x,y,z,ict. I n  t h i s  representation cp = 0 i s  a three-dimensional hypersurface 
i n  space-time. (See f i g .  2.) The uni t  four-normal t o  t h i s  hypersurface i s  

given by 

ict t 

( P ( X , Y , L , t ) ' O  

Figure 2-  Three-dimensional hypersurface in 
space-time (edge view wi th  spatial coordinates 
contracted). 

(4) 

where Greek subscripts run from 1 t o  4, and 
i s  the four-dimensional gradient defined by 

The denominator i n  equation (4)  i s  r e a l  and 
posit ive,  since by equations (1) and (2)  

8 



In four-vector notation the total differential dcp becomes 

Maxwell's equations.- Maxwell's equations in four-dimensional integral form 
(with Cartesian tensor notation) are 

or 

@F&pp d S  = 0 J 

where V is an arbitrary four-dimensional hypervolume in space-time; S is the 
closed three-dimensional hypersurface bounding V; pp is the outward unit 
four-normal on S; and 

-H3 0 

0 
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cB3 
0 

-CB1 

iE2 

-iE3 

0 

i E 1  

-c% 

The first of equations (7b) has but four independent components obtained by 
se t t i ng  
of equation (7a) and the antisymmetry of fa@; F& i s  the dual tensor of FuP. 

Formally the metric i s  a de f in i t e  form, since i n  terms of the coordinates (8a) 

ds2 = dx12 + dx22 + dx32 + d ~ 4 ~ ,  where ds i s  the  length of a l i n e  element i n  

space-time. 

a@y = 123, 124, 134, and 234. Equation (7c) i s  a d i rec t  consequence 

Maxwell's equations, together with the  re la t ion  Fcrs =E fup ( i n  vac- 

uum), const i tute  t he  axioms of electrodynamics. 
t i o n  of special  r e l a t i v i t y )  they apply t o  i n e r t i a l  reference frames and, i n  
par t icu lar ,  t o  the  laboratory frame. It i s  assumed, though, t ha t  the curvature 
of space-time i s  negligible.  Aside from t h i s  assumption, no constraints a r e  
placed on the  material medium, i t s  s t a t e  of motion, anisotropy, temperature, 
mechanical s t ress ,  or the  l i ke .  
s t i t u t i v e  relat ions,  which the  ensuing treatment i s  not concerned with.) 

A s  written here ( i n  the nota- 

(Properties of the  medium appear i n  the con- 

The axioms have, of course, been recast  i n t o  a number of varied forms. 
(See Truesdell and Toupin (ref.  5 ,  pp. 666-668), Sonrmerfeld ( r e f .  3, pp. 286- 
287) , and Fano, Chu, and Adler ( r e f .  8, pp. 389, 480, and 483). ) 
which follows can be applied t o  each of these. 

The procedure 

Hilber t ' s  view t h a t  a l l  na tura l  laws should be expressed i n  in t eg ra l  form 
(See r e f .  5 ,  p. 232.) 
I n  regions of regular i ty  they a re  

i s  adhered t o  i n  the  preceding formulation. 
form the  axioms have uniform appl icabi l i ty .  
i den t i ca l  with Maxwell's equations i n  d i f f e r e n t i a l  form, which a re  obtained from 
s e t  (7) by using the  divergence theorem 

I n  in t eg ra l  

10 



o r  

(Set (9)  i s  presented by Sommerfeld (ref. 3, pp. 216-218).) 
continuity the axioms give the jump conditions or boundary conditions which 
s h a l l  now be derived. 

A t  surfaces of dis- 

Derivation of the Boundary Conditions 

f o r  Elec t r ic  and Magnetic Fields  

The four-dimensional procedure t o  be followed was first applied t o  the 
boundary conditions for e l e c t r i c  and magnetic f i e l d s  by Luneburg ( r e f .  4) and 
l a t e r  by Truesdell and Toupin ( r e f .  5 ) .  The following treatment i s  more gen- 
e r a l  since it includes surface charge and surface current which a re  essent ia l  
i n  many applications.  

Surface current and charge. - Surface charge density 71 appears, f o r  
example, shenever conductors a r e  placed i n  an e l e c t r i c  f i e l d .  Surface current 
density L a r i s e s  by convection of q or by conduction i n  the  Q m i t  of i n f i -  
n i t e  conductivity or zero skin depth. For stat ionary surfsces L i s  loca l ly  
tangential;  but f o r  moving surfaces it seems l ike ly  t h a t  L should have a nor- 
mal component a r i s ing  from convection of q i n  the  normal direction. 

A surface quasi-four-current density 

may be defined fo r  a fixed surface cp(x,y,z) = 0 by 

where n j  
on the surfaces 

made over a moving l i n e  element which follows the  surface through displacements 
i n  the  normal direction, and the  def ini t ion f o r  &, with reference t o  figure 3y 
then becomes 

i s  the l o c a l  un i t  normal and the end points of the  l i n e  in t eg ra l  l i e  

cp(xj) = &r. But fo r  a moving surface the  integrat ion must be 

11 



dxj - N at) 
x j  A T )  

&, = 7 4  lim . / x j , t ( - T )  

where the  end points of t h e  l i n e  in t eg ra l  l i e  on the  moving surfaces 

'f 

z , t ) = O  

Figure 3. - Two-dimensional moving surface in space (edge 
view1 with surface-charge density r\ and surface- 
current  density Li shown. 

r r r  

( p ( x j , t )  = h. Alternately, from 

equation ( 3 )  

The term h, i s  cal led a quasi-four-vector 
because the  product IRpl& i s  a Lorentz 

invariant,  although & i tsel f  i s  not. 
These transformation properties are pre- 
sented i n  appendix A. 

+ 4 
Boundary conditions on H and D.- 

In  axiom (7a) choose V t o  be a s e b e n t  
of t he  hypervolume included between hyper- 
surfaces cp = +T, as i l l u s t r a t e d  i n  f ig -  
ure 4, and take the l imi t  as T + 0 

iCt t 

( + I  
\ 

-+ \ 
\ 

Ip(x,y,z , t  = 0 

Figure 4.- Four-dimensional hypervolume V 
enclosed by three-dimensional hypersur- 
face S in space-time (viewed along con- 
stant 9 hypersurfaces wi th  spatial 
dimensions contracted). 

If du 

i t s  un 
c p = o  

denotes an element of the  hypersurface 
and mp dxp denotes a l i n e  element along 
t four-normal mp, the  volume in tegra l  

may be writ ten i n  the l i m i t  as an integration 
over u and i t s  four-normal 

The in tegra l  over S may a l s o  be changed t o  an 
in tegra l  over u, since the  edge contributions 
of S vanish i n  the  l i m i t ,  and equation (11) 
becomes 

12 
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where 9 i s  the u n i t  four-normal t o  cp = 0 given by equation (4), and [GI 
denotes the discontinuity G+ - G' a t  cp = 0 with k signs re la t ive  t o  mp. 

Using equation (6) t o  change variables i n  the l i n e  in tegra l  on the r igh t  
of equation (13) gives 

and by def ini t ion (1Oc) 

where & i s  the surface quasi-four-current density (eq. ( l o a ) ) .  Since the 
remaining integrat ion i s  over an a rb i t ra ry  portion of the hypersurface 
and the integrands a r e  assumed t o  be continuous along the  hypersurface, the  
in tegra l  signs may be dropped and the  equation writ ten 

cp = 0 

on cp = 0. Substi tution of equation (4) gives 

on 
ant four-dimensional form. 

cp = 0, and t h i s  i s  the boundary condition derived from axiom (7a) i n  covari- 

This boundary condition has a corollary which i s  readi ly  obtained by m u l t i -  
plying both sides of equation (17) by The left-hand side of t h i s  equation 
vanishes since 
i n  covariant form 

(P,~.  

fup i s  an antisymmetric tensor,  and the corollary i s  obtained 

Condition (17) and i t s  corol lary (18) may be t rans la ted  t o  three- 
dimensional form by expanding the left-hand s ides  of both equations and 
dividing by I Ltp I : 



By definit ions (1) and (2)  these equations become 

N h j n j  - AI+ = 0 

0 

The function cp no longer appears expl ic i t ly ,  and [G] denotes the  discon- 
t i n u i t y  G+ - G- with f signs re la t ive  t o  the  s p a t i a l  normal n j .  Substitution 
of the  f i e l d  matrices (8c) and ( loa)  gives f o r  the  f i rs t  three components of 
condition (21) 

6 x [iq + N[3] = E' 
fo r  i t s  fourth component 

E; * [SI = q 

and for  the corollary (eq. (22))  

(24) 
A +  

n - L - Nq = 0 

a t  a moving surface of discontinuity. 
+ -+ 

Boundary cocditions on E - and B.- Axiom (7b) i s  c lear ly  amenable t o  the  
foregoing treatment, and the  resul tant  boundary condition i n  e i ther  of two 
covariant forms may now be wri t ten by inspection as 

or 

[Fx,plcp,p = 0 

J 

14 



on cp = 0. Translation of condition (25) t o  three dimensions gives 

n *  B = O  
A ["I 

a t  a moving surface of discontinuity. 

Discussion.- A comparison of boundary condition (23a) with the  corre- 
sponding Maxwell equation cu r l  H - D , t  = J shows a t  once t h a t  t he  term -N[s] 
represents a surface displacement current density a r i s ing  from the  rapid change 
i n  D which a fixed observer would note as the  moving surface passes him by. 
Similarly, the  term -N[s] of boundary condition (26a) i s  the  surface counter- 

pa r t  of B , t  from Maxwell's equation cu r l  E + B , t  = 0. 

+ +  + 

+ 

+ +  + 

The r e su l t  t h a t  N, the  speed of displacement of the  electromagnetic- 
discontinuity surface, i s  the  only velocity tha t  appears i n  the boundary con- 
di t ions (although the material  medium i s  i n  no way r e s t r i c t ed  t o  purely normal 
motions) was ant ic ipated i n  the  section en t i t l ed  "Moving surfaces." 
expected was equation (24) for the  normal component of surface-current density 
L a r i s ing  from convection of surface-charge density q i n  the  normal direction. 

Also 

+ 

Derivation of the  Current Boundary Condition 

Four-dimensional form.- The current boundary condition a t  a surface of 
d i scon t in2 ty  which car r ies  surface charge density q and surface current 
density L evolves from axiom (7c) 

with the  closed hypersurface S a s  depicted i n  f igure 4. It i s  convenient t o  
s p l i t  the  in t eg ra l  a s  shown: 

where S,, denotes the  two pa r t s  of S p a r a l l e l  t o  the  hypersurface cp = 0 
and SI i s  the hy-percylindrical pa r t  of S which cuts  cp = 0 and i s  ortho- 
gonal t o  it. 



The intersection of hypercylinder S, with hypersurface cp = 0 is a 
closed two-dimensional hy-percircuit which surrounds a region cr on cp = 0. In 
the limit as T 4 0  the integral over ,511 may be written as an integral over 

u, and equation (27) becomes 

where m, is the unit four-normal to hypersurface cp = 0 defined by 
equation (4) . 

The integral over S, in equation (28) does not vanish here as T + 0, 
in contrast to the previous derivation (eqs. (11) to (13)) since the defining 
equation (1Oc) for h, = (Ll,L2,Lj,icq) 
cp = 0. 
four line elements 

implies that Tu is infinite on 
Ebaluation of the integral is begun by defining an orthogonal set of 

where 

6xP,&,, are the components of two orthogonal line elements which lie along 
the two-dimensional intersection of hy-percylinder S, with hy-per- 
surface cp = 0 

%m, dx, is a line element along ma, the unit four-normal on cp = 0 

p&E dx, is a line element along pa, the outward unit four-normal on S, 

The relevant hypersurface elements written in terms of set (29) are 

where the Levi-Civita symbol 

(for ~1437~ an even (odd) permutation of 1234) 
(31) 

( f o r  two or  more indices alike) 
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me l i n e  elements 6% ?nd hv have circumferential directions on the 
hy-percylinder S, and may be combined i n  a tensor element dsPv given by the 

determinant 

% 
Exv Axv 

aspv = 

so t h a t  

Thus equation (28) becomes 

and from equations (6)  and (1Oc) 

Here the second in t eg ra l  i s  over the closed hypercircuit  on cp = 0 which 
bounds region u of the  first in tegra l .  The second in t eg ra l  can be t rans-  
formed t o  an in t eg ra l  over u by Stokes’ theorem, one form of which s t a t e s  
b P P .  B) 

( 3 5 )  

T h i s  transformation i s  car r ied  out i n  appendix B, and the  r e s u l t  obtained i s  

on cp = 0. By the  same argument t h a t  precedes equation (16), 



on cp = 0. Substi tution of m, from equation (4) gives the current boundary 
condition i n  covariant four-dimensional form 

on cp = 0. 
condition (l7), subst i tut ing equation (ga) , and u t i l i z i n g  the antisymmetry of 

Incidentally,  condition (38) can a l so  be obtained by d i f fe ren t ia t ing  

fa$ 

The remaining task  i s  the  t rans la t ion  of t h i s  boundary condition t o  three- 
dimensional language. For the second term, i n  par t icu lar ,  this t rans la t ion  
requires a close scrutiny of the  f o r m a  treatment of surface densi t ies .  

Functional dependence of surface e n t i t i e s . -  It i s  appropriate, physically, 
-+ 

t o  conceive of t he  surface densi t ies  L and 7 as  being defined only on the 
surface of discontinuity But t h i s  concept i s  awkward mathematically 
when the divergence of L 
On the  other hand, equation ( ~ O C ) ,  which defines &, = (?,icv) 
cp = 0, may a s  readi ly  be applied a t  any surface of the  manifold 
cp(x,y,z,t) = Constant. By t h i s  process & becomes &.(x,y,z, t)  - a vector 
f i e l d  defined throughout a region of space-time. 
here. 

cp = 0.  
4 i s  required, a s  i n  the second term of equation (38). 

a t  the surface 

This i s  the concept adopted 

To be viewed i n  l i k e  manner a re  the s p a t i a l  normal g(x,y,z, t)  and the 
surface speed 
cp(x,y,z,t). 

N(x,y,z,t),  both of which a re  derived from the  surface function 
Ultimately a l l  quant i t ies  s h a l l  be evaluated a t  the surface cp = 0 .  

Translation t o  three-dimensional form.- When divided by lRpI and expanded 

(by using eqs. (l), ( 2 ) ,  and (8b)) ,  the f i r s t  term of condition (38) becomes 

where [G] s igni f ies  the  jump G+ - G- a t  the  surface, with f signs r e l a t ive  
t o  the spa t i a l  normal n. 
three-dimensional form (a s  carr ied out i n  appendix C )  gives 

h 

Translation of the  second term of equation (38) t o  

where - a A  = n . V i s  the normal derivative and (at a + N - 2) i s  the displacement 
an 

derivative following the  boundary through displacements along i t s  loca l  normal. 

18 



A s  shown by McConnell (ref. 9,  p.  206), the expression div 6 is related 
to the mean curvature C of a constant cp surface by 

c = -div ;; (404 

where C > 0 for concavity in the sense of C is used in place of 
W ,  and in Cartesian coordinatee, grs = 6rs.) 

The last term of equation (39b) has an alternate form 

4 
as the two-dimensional surface divergence of the local projection of 
constant cp surface. T h i s  identity follows from the theorems of Stokes and 
Gauss applied to this surface over an arbitrary area a and its bounding con- 
tour line 2 

L on a 

= -Jdivsurface@ x (fi x Z ) ) h  
+ 

The local projection of L may also be written 

4 -G x (fi x z) = L - ;;Nv 

by corollary (24). 

Substitution of expressions (39a) and (39b) into condition ( 3 8 )  with iden- 
tities (40) completes the translation, and in final three-dimensional form the 
current boundary condition is 

6 [?I - N[p] t- curl(; x E’) - CNq + ($ + N &)q = 0 



or  

a t  a moving surface of discontinuity. 

The curvature term takes account of changes i n  the  surface area as it 
moves. 
formly dis t r ibuted on i t s  surface, the current condition reduces t o  

-CN7 + - + N - q = 0. The displacement der ivat ive of q i s  negative since 

the  charge i s  dis t r ibuted over an increasing area; and t h i s  i s  ju s t  compensated 
by the  curvature term, where fo r  n rad ia l ly  outward N i s  posit ive and C ,  
negative. 

Thus f o r  an expanding sphere i n  vacuum, with a f ixed t o t a l  charge uni- 

(2 :J 
A 

Sign convention.- A review of the  sign convention i s  given below: 

Field discontinuity [G] = G+ - G’ with k signs r e l a t ive  t o  ( P , ~  

Hy-persurface equation ~ ( x , y , z , t )  = o 1 Four-dimensional form ( f i g .  2) : 

Three-dimensional form ( f i g .  1): 

A 

Surface uni t  normal n 

Surface speed N > 0 fo r  motion i n  the  sense of 

} (42) 

I A Surface curvature C > 0 fo r  concavity i n  the  sense of n 

Field discontinuity [GI = G+ - G- with f signs re la t ive  t o  n 

The resu l t s  of par t  I are displayed i n  tables I and 11, which show the  
correlation between the d i f f e ren t i a l  and surface forms of Maxwell’s equations 
i n  four and three dimensions. 
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I 

TABLE I.- EQUATIONS AND COFEESPONDING BOUNDARY CONDITIONS 

IN FOUR-DIMENSIONAL COVARIANT FORM 

Maxwell's equations Jump conditions at hypersurface (p(x,y,z,t) = 0 

TABLE 11. - EQUATIONS AND CORRESPONDING BOUNDARY CONDITIONS 

IN THREE-DIMENSIONAL FORM 

Maxwell's equations 

cu r l  
4 
H 

4 
J 

-3 
d i v D = p  

j - 3  
c u r l  E + B , t  = 0 

+ 
d i v B = O  

JUDIP conditions a t  surface moving with speed N 

G X  [g] + N b ]  = ?  A - 3  

n - L - Nq = 0 (Corollary) 

G - [3] = q J 
;; x [z] - 44 = 0 

n -  [+I B = O  

6 [T] - N[p] - biyswface(; x (2 x 2)) 

-CNq + (2 + N $)q = 0 
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11. EUCTRODYNAMIC TRACTIONS AND POWER TRANSFER AT A MOVING BOUNDARY 

General Considerations 

The following identity may be derived directly from Maxwell’s equa- 
tions (ga) and (gb), as in Mbller (ref. 10, p. 202): 

where Fa,  FM, and fap are the electromagnetic field tensors defined in 
set (8). 
dimensional statement of the electrodynamic momentum and energy conservation 
laws -‘in which case the differentiated quantity on the right is designated the 
stress-energy tensor Tup and either side represents the electromagnetic four- 
force density K ~ .  

This identity, due originally to Minkowski, may be regarded as a four- 

Interpreted in this way equation (43) may be written 

where 

or in matrix form 

EiDj + HiBj - W6i j -iC(s X Tf)i 
: .............. 

W 
C 

with 

Ti j Maxwell stress tensor EiDj + HiBj - WSij 

electromagnetic energy density ‘(2 . 5 + 2 . 3) 2 W 

2 x  3 
Tj’ x electromagnetic momentum density 

Poynting vector, or electromagnetic energy flux vector J 
22 



The first three components of the  four-force density 

give the  electromagnetic pondermotive force per un i t  volume; i n  the  fourth com- 
ponent p i s  the  power per u n i t  volume l o s t  by the f i e lds  through conversion 
t o  other types of energy (kinet ic ,  thermal, e tc . ) ;  p i s  a l te rna te ly  termed the  
power t ransfer  density. 

Incidentally, terms may be added t o  both sides of equation (43) which pre- 
serve the ident i ty  but change I C ~  and Tap. (See Mbller (ref.  10, 
pp. 204-206); Pauli  ( r e f .  2, pp. 108-111); and Fano, Chu, and Adler (ref.  8, 
pp. 492-499).) 
the  procedure which follows ( t rea t ing  Minkowski's form) i s  applicable t o  each. 

NO general agreement yet ex is t s  on which form i s  correct,  but 

Derivation of the  Electrodynamic Conservation Laws 

f o r  a Moving Boundary 

A surface form of the momentum and energy conservation l a w s  may be derived 
from equation (44) by the  same procedure used t o  obtain the  boundary conditions 
from Maxwell's equations i n  par t  I. Let cp(x,y,z,t) = 0 define the moving and 
deforming surface under consideration. (See f ig .  3.) By di rec t  analogy with 
the surface quasi-four-current density & = (Ll,L2,L5,icq) take 

K, = (K1,~2,~3+) ( 4 7 4  

t o  be the  surface quasi-four-force density defined by (eq. (1Oc)) 

where K i  i s  the  electromagnetic surface t rac t ion  and P the  power t ransfer  
per un i t  area a t  the surface. 

It i s  c lear  t h a t  equation (44) ,  with i t s  center expression omitted fo r  the  
moment, i s  formally s i m i l a r  t o  Maxwell's equation (9a), and i t s  surface form 
may be writ ten by inspection (eq. (17)) 

I 
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The surface form of the center expression in equation (44) may now be obtained 
by recalling that the center expression and right-hand side of this identity 
are related by Maxwell's equations (ga) and (gb); hence, the corresponding terms 
in the surface form of the identity are related by boundary conditions (17) and 
(25) - which are the surface forms of (9a) and (gb) . 
these boundary conditions into the right-hand term of equation (48), as carried 
out in appendix D, yields the desired center expression 

Formal substitution of 

or by identity (D2) 

at cp(x,y,z,t) = 0, where 

with the k notation defined in set (42). This is the surface conservation law 
in covariant form. Its translation to three-dimensional language involves the 
substitution of equations (1) , (2), (8c), (8d), (loa), (45b), (45c), and (47a) 
with the identity - fepFep = $(it B - D 
equation (49) become 

+ +  1 
4c 2). The first three components of 
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where Ti3 
electrodynamic momentum conservation law. 

(eq. ( 4 5 ~ ) )  has been substituted; this is the surface form of the 
The fourth component becomes 

P = 2 - ( 3 )  + $21 -($) - (2) - [z]) + $4 - ( z )  - (2) [g]) 

= -2 [z x 4 + a[.] 

or 

and this is the surface form of Poynting's theorem, or the conservation of 
electrodynamic energy. Tables I11 and IV display the volumetric and surface 
forms of the conservation equations in four and three dimensions. 

Identities Derived From the Antisymmetric Part 

of the Stress-Energy Tensor 

The stress-energy tensor TM, as defined in set (45), is asymmetric; but 
it may be written as the sum of a symmetric and an antisymmetric tensor. 

Tup = $(Tap + Tpu) + $(j?@ - Tpu) = T% + ( 52a ) 

where, by equation (45b), 

with 



TABLE III. - MIlyKowsKI CONSmATTON IAWS .IN FWR-DPWSIONAL CUi'ARIANT FOFX 

3,i) 

surface form at p(x,y,z,t) = o I 1 volumetric (differential) form 

2 = q(z) + t x  (z) + E([$] 

P = E'. (2)  +$I . ( 5 )  

= [y] . + N[zX 21 

= -; . [$ x 21 + N F ]  

TABLE W . -  MINy;oxsKI CONSERVATION IAWS Ri TkZU3E-DPWSIONAL FOF34 

~ 

Volumetric (differential) form Jump form at surface moving with speed N I 
(3) - (4 . [3]) + @  ' (3 )  

(z) ' [SI) + &  . (2 )  - (z) 
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The antisymmetric part Ta 
tion by Minkowski in 1908. 
(ref. 2, pp. 108-111) .) 

has been a subject of discussion since its incep- UP 
(See Mbller (ref. 10, pp. 204-206) and Pauli 

Splitting the four-force densities also 

enables a number of relations between the antisymmetric, parts IC:, and 

to be obtained by inspection of formally identical equations in tables I and 11. 
These relations should provide a fresh vantage point for the symmetry issue. 

T$, 

Both fa (eq. (8c)) and eP (eq. (52b)) have the same antisymmetric 
form; utilizing equations (9a) and ( 5 3 ) ,  (17) and (54), with definitions (8b) 
and ( 4 6 ) ,  (loa) and (47a), the terms may be paired as shown: 

Four-dimensional pairs: 

ra 4 L  

1 
Three-dimensional pairs: 

+ + 
J P L 

( 5 5 )  

Thus tables I and I1 go over by direct substitution to tables V and VI and give 
the tractions and power transfer (with related identities) contributed by the 
antisymmetrical part of the stress-energy tensor. 



TABLE V .  - -C REIXCIONS IN FOUR-DPIENSIONAL COVARIANT FORM 

IVoIumetric (differential) form1 m a c e  form at 'p(x,y,z,t) = 0 
I 

TABLE VI.- ANTISYMMETAIC RELATIONS IN !CHEEE-DPIENSIONAL FORM 

volumetric (differential) form Jump form at  surface moving with speed N 

I 
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APPENDIX A 

TRANSFORMATION PROPERTIES OF SURFACE DENSITY 

QUASI -FOUR-VECTORS 

The surface quasi-four-current density h, and quasi-four-force density 
K, are defined on a moving surface cp(x,y,z,t) = 0 by equations (10) and (47), 
respectively. 
equations (17) and (48), since 

vectors and, consequently, & l q I  and &llXpI must be also. Thus, if 
x,y,z,t and x',y',z',t' are two inertial frames related by the Lorentz 
transformation 

Their behavior under the Lorentz transformation is apparent from 
[fad'p,p and [T@](P,~ are clearly four- 

with identical relations for G, where 

and 2~ is the Lorentz transformation matrix. (See Mbller (ref. 10, pp. 94 
and 118).) These are the surface density transformation relations. 

It also follows from the scalar invariance of 10 cpl and from equa- 

are also Ka and = IW I n, tion (?b), that & - = lo(P1 VL-372 VZ-Tp 
four-vectors. Hence the transformation relations may alternately be written 



APPENDIX B 

APPLICATION OF STOKES’ THEOREM TO TRE CURRFIV” 

BOUNDARY CONDITION 

For a closed two-dimensional hy-percircuit on a hypersurface (which i s  
taken here t o  be cp(x,y,z,t) = 0),  Stokes’ theorem s t a t e s  (Synge and Schild 
(ref. 11, p. 269)) 

where qPv 
the present purposes), and, i n  terms of the orthogonal set of l i n e  elements ( 2 9 ) ,  

i s  an a rb i t r a ry  s e t  of functions of the coordinates ( a  tensor fo r  

dspv = 

By introducing the  dual four-vectors (Mbller (ref. 10, pp. 112-117)) 

the  right-hand s ide of theorem (Bl) may be rewrit ten 
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APPENDM B 

may be further reduced by equations (B2), (31), and (3Oa) to The element 
yield 

do: 

= 60up7 dx, 6xpaX, = me do 035) 0 
where me is the unit four-normal on cp = 0, and equation (B4) becomes 

which is the form of Stokes’ theorem given in equation (35). 

Using theorem (35) in equation (34), with $pv = 6pvap&mp - ‘w‘ gives 
In4 

But 

sehclv6pvap = 2(6ea~p - 6Aa6ep) 

where 6,~ is the Kronecker delta. Hence 

r 

Since q& = cp,& = 0 by corollary (18) and mpmp = 1 by equation (4) 

r 
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m t  

or 

and result (36) is thus established. 
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APPENDIX c 

VERIFICATION OF IDENTITY (39b) 

Identity (39b) is most easily checked by manipulating the right-hand side 
as shown below: 

where 

11 = (2 + N 2 ) ~  + N q  d iv  n h 

A 

12 = n - curl(: x 2) 
Combining terms in I1 

and substituting equations (1) and (2) gives, 

Because x4 = ict (eq. (8a)) and A4 = icq (eq. (loa)) 
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and by corollary (18) 

I n  tensor notation, I 2  i s  given by 

where the Levi-Civita symbol 

+l(-1) ( f o r  i j k  an even (odd) permutation of 123) 
(c6) 

( f o r  two or more indices a l ike )  
' i jk  = (. 

It follows t h a t  

€ijkEkZm = 6 i 2 6 j m  - %m6j2 

where 6 i j  i s  the  Kronecker del ta ,  and equation (C?) becomes 

When equations ( C 4 )  and ( ~ 8 )  a re  added, the second terms of each cancel 

11 + I 2  = '(IWIAj) + l((Ql%),4 1 - 1  , j  I W I  

Iw I 
and i den t i ty  (39b) i s  thus established. 
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APPENDM D 

ESTABLISHMENT OF THE CENTER EXPRESSION OF EQUATION (4ga) 

BY MEANS OF THE BOUNDARY COIVDITIONS 

The following two iden t i t i e s  a re  easily proved 

Pfl = CFI (f) + (F) [f] 

F+f- - F-f+ = [F] (f) - (F) [f] (D2) 

where the  no ta t ion . i s  defined by equations (49c). 
equation (49a) may be validated most eas i ly  by deriving the  surface conserva- 
t i on  laws from the boundary conditions by the procedure i l l u s t r a t e d  i n  M6ller 
(ref.  10, p .  202) f o r  obtaining the  volumetric conservation l a w s  from Maxwell’s 
equations. 

The center expression of 

S tar t ing  from the  iden t i ty  

based on boundary condition (17) and subst i tut ing equation (Dl) gives 

The last term may be manipulated as  shown 

so t h a t  equation (&) becomes 
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Upon subst i tut ion of boundary condition (25 )  

and by iden t i ty  (Dl) 

( D 7 )  
Hence, upon division by c 

and with terms transposed 

o r  by def ini t ion (45a) 

which i s  the  iden t i ty  i n  question. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hamton, Va., September 18, 1964. 
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